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It is shown how a consistent finite element approximation to the Navier-Stokes equations
can be constructed on a general grid using an arrangement equivalent to the MAC stencil. It
is known that the standard Galerkin construction does not give a consistent result unless at
least quadratic velocities are used in this type of element. However. the use of either a finite
difference approximation to the pressure gradient term or a Galerkin scheme equivalent to a
vorticity method appears to give a consistent scheme. Both alternatives are tested, and the
vorticity method is shown to be superior.

1. INTRODUCTION

Approximation of incompressible flows by the finite element method is currently a
very active field of research. Since many of the applications of incompressible flow
codes involve complex geometry, the finite element method is a natural candidate.
Because the incompressibility constraint forces some of the calculation to be implicit,
the finite element method is a much stronger competitor for finite difference schemes
than it is in problems where fully explicit finite differences can be used. However,
much work remains to be done in understanding, for instance, under what conditions
finite element methods work well for transient flows and the relationships between
primitive variable and vorticity formulations, and between finite element and other
methods. A recent review paper by Hughes ef al. [1] discusses some of these issues
and lists many of the references to work in this area.

In this paper we study some lower-order finite element approximations. It is
desirable to use a low-order scheme because finite element schemes may be very
expensive in computer time and storage, particularly in three dimensions. The most
common such scheme is to use a bilinear or trilinear approximation to the velocity
field and a piecewise constant approximation to pressure. This element was used in
[1] and by Gresho er al. [3] among many others. An alternative scheme was recently
proposed by DiCarlo and Piva [8], based on the finite difference MAC stencil of
Harlow and Welch [7]. They demonstrated an apparent advantage in accuracy over
the scheme used in [3] for a rectangular grid. However, it is not easy to apply such a
scheme to an arbitrary grid defined by an isoparametric coordinate transformation.
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It is possible to construct a Galerkin algorithm in this case, in the way discussed by
Raviart |9], but it does not give convergent results. In |8] the scheme was therefore
only advocated for use with global coordinate transformations, for instance. those of
Thames et al. [6]. In this paper we examine two methods of obtaining a convergent
result with this element. One method is to use a finite difference operator instead of
the Galerkin approximation to the pressure gradient term. The other is to use a full
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R is the Reynolds number and the remaining notation is standard. The structure of
incompressible flow in two dimensions is simpler than in three, and the algorithms
are described for this case. The extension to three dimensions is discussed separately.
Only two-dimensional computations will be presented.

We now introduce a low-order finite element scheme for (2.1) with the variables
defined in a way analogous to the finite difference MAC stencil. This scheme was
described by Dicarlo and Piva |8], and proposed for use in general geometry by
using a global coordinate transformation. In this paper. we develop ways of using it
with the standard local isoparametric mapping.

The domain 2 is subdivided into quadrilaterals. The global coordinates (x. ') are
transformed in the usual way into local coordinates (& #n) by a piecewise bilinear
transformation:

x=x(&n),  y=y(&n).

Each element is transformed to a square (0. 1) X (0. 1) in the (¢, #) coordinates. The
local coordinates are non-orthogonal. The velocity field is approximated in terms of
the mass flux across element sides. The nodal parameters are thus the integrated
normal fluxes across the sides, and are assumed to be located at midside nodes. There
are four degrees of freedom per element. The flux across the sides &= constant is
assumed to be linear in & and independent of #, and vice versa. Provided the elements
remain non-singular, this means that velocity components in two different directions
are defined everywhere in each element, giving a representation of the velocity field in
which the tangential velocity only is discontinuous across element boundaries. The
prescribed variation in the mass fluxes establishes a logical connection between
opposite sides of quadrilaterals. The structure of this connection on an arbitrary mesh
is illustrated in Fig. 1. There is no need for the mesh to be logically rectangular.
The definition of the velocity field in terms of mass fluxes means that the
continuity equation (2.2) can be approximated by
N ~

mI- * Si

—0, (2.3)

—_—

=1

where the sum is taken over the four sides of each element in turn and the vector m
represents the mass flux.

e

Fic. 1. Logical structure of velocity representation.
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The velocity field implied by this representation has covariant components in the
(&, n) directions (na ™'/, ny='/?), where (m, n) are the fluxes and a, y are components
of the metric tensor of the bilinear coordinate transformation, defined in full by

a=x,+y,,  B=xx,tyy,.  v=x]+¥
J=Xv,~—pex,. (2.4)

The contravariant components can be calculated in the usual way. The fluxes (m, n)
can be written in the form

(E md(&). Y n-ﬂj(n)), (2.5)

where A, are basis functions linear in ¢ and independent of #, and u ; vice versa.

Up to this point, this construction could equally be carried out in three dimensions.
In two dimensions, however, we can proceed further by identifying the fluxes (m. n)
with the derivatives (—dy/on, dw/0€) of a discrete streamfunction w, where y is
bilinear in ¢ and # on each element and can be written in the form

3 Wakal& ), (2.6)

where y, are piecewise bilinear basis functions equal to unity at one corner node and
zero at the remainder. The mass fluxes associated with y, are shown in Fig. 2. This
set of fluxes forms a member of a divergence-free basis for the mass fluxes in the
sense of [10, 11]. The Cartesian components of the velocity field u are given by

1
U= 7 lw{xn - an{l‘
2.7)

1
v= 7 {W!}’,, - Wnyll'

Note that these components are not linear in & and #.

FiG. 2. Local basis for weakly solenoidal space J,.
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This representation is different from that used by Dicarlo and Piva [8]. This is
because their specification of the contravariant components of velocity is sufficient to
ensure continuity of mass flux if the coordinate transformation is C', as are those
that they use. Since this isoparametric transformation is not C'. the definition here

has to be directly in terms of mass fluxes.
The nressure in this element is naturallv taken as piecewise constant at element
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(i) Given initial midside fluxes {(m, n) satisfying (2.3) calculate corner nodal
values of the streamfunction y by direct integration.

(ii) Calculate an approximate piecewise bilinear vorticity field using the
Galerkin method with test functions y,,.

I
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(iii) instead of (2.16), solve the pair of equations

1
L) T ["(W(nn = BXu) My pg =, a) + (@ g = Bl Myyar— 1, _a)] dEdn

2
— 1
=24t ( w(‘(~yu,w_ +wor.). +— 1 lay..— Br..)
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where the local isoparametric coordinates are (& 7, o). Equation (2.15) can then be
written as

J'm x,u - ds — J"Q u X Vy, d0 :J"Q &y, d2.

It is then straightforward to construct (2.16); and the rest of the hybrid finite
difference algorithm.

While the vorticity-based algorithm (2.19) can still be written down, the pair
(2.19), (2.20) do not contain sufficient equations if (2.19) is only written for interior
nodes; even though it is now a vector equation. This difference is associated with the
difficulty of choosing boundary conditions on the vector potential to allow a three-
dimensional velocity field to be constructed from the vorticity field. This problem has
not yet been satisfactorily resolved except in simple geometry.

3. EXPERIMENTS

3.1. Introductory Remarks

In this section we demonstrate the validity of the two algorithms using the MAC-
type finite element scheme by applying it to two standard test problems where the
results are known from careful high-resolution computations. These are, unfor-
tunately, steady flow simulations and can only provide a limited test of a transient
code. However, inconsistency in the algorithm is still likely to show up in a steady
case; it is hoped to test the algorithms on transient problems in the future. Since most
of the difficulties with this sort of element only appear with a distorted grid, one of
the tests involves non-trivial geometry. In order to estimate the resolving power the
calculations are intentionally performed with rather limited resolution, since a
duplication of the known solution with a very fine grid would not give any infor-
mation about the cost-effectiveness of the scheme.

3.2. Driven Cavity Problem

This standard test consists of calculating the steady two-dimensional flow in a
square box (0, 1) X (0, 1) driven by the lateral movement of the lid. This was used to
test the finite element MAC scheme in [8]. Results for a selection of Reynolds
numbers have been reviewed by Olson and Tuann [16]. Very accurate reference
results have been computed for Re = 1400 and 2000 by Winters and Cliffe |17]. As
an initial test, results were computed for Re =1 to check against those of |8, and
identical results were obtained. The flow at Re= 100 and 400 was then computed
using a stretched 11 X 11 rectangular grid with values of x on each row and y on
each column of (0.00, 0.02, 0.08, 0.18. 0.32, 0.50, 0.68, 0.82. 0.92, 0.98, 1.00).
Reynolds number considerations suggest that the boundary layers should be just
resolved for Re = 100 but not for Re = 400.

The computations were carried out using both the vorticity projection algorithm
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{2.19) and the finite difference pressure gradient (2.17). The latter was implemented
with both the algorithm (2.16) for the nonlinear term and with a two-stage scheme
{(2.18). When (2.19) is used the pressure is recovered as a bilinear function by solving
the Poisson equation derived from {2.21). The result is the dynamic pressure and
interpolated values of u and v are used to estimate the static pressure. The pressure is
normalised by its value at the midpoint of the side opposite the sliding lid.

The transient equations were integrated forward in time till apparent steady state.
However, there is always the possibility of some residual error when comparing with
solutions given by a steady-state code such as that in [17]. Cross sections of the
results are given in Figs. 4 to 13, since a quantitative comparison is easier than with
a two-dimensional field. However, these have to be treated with some caution, since
the grid resolution normal to the cross section is very low. In both figures and text
the results using the vorticity projection are denoted as V and using the finite
difference projection with single and two-stage advection as F1 and F2.

At Re = 100 the results are shown in Figs. 4 to 8 and can be compared with those
summarized in |16]. Reference |16] gives values of the streamfunction at the vortex
center ranging from 0.0784 to 0.1022, with the latter considered the best result. The
best value for the vorticity at the vortex center is 3.155 and for the normalised
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Fig. 4. Streamfunction along horizontal center line. Re = 100. V' Vorticity projection: F1: finite dif-
ference.
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Fi1G. 5. u velocity along vertical center line, Re = 100. Notation as in Fig. 4.
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F1G. 6. v velocity along horizontal center line, Re = 100. Notation as in Fig. 4.
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FiG. 7. Vorticity along horizontal center line, Re = 100. Notation as in Fig. 4.
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FiG. 8. Pressure along horizontal center line, Re = 100. Notation as in Fig. 4.
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pressure 0.0922. The values obtained in the present calculations are, for the stream-
function, 0.097 (V), 0.095 (F1), 0.094 (F2), for the vorticity, 4.23 (V), 3.88 (F1).
4.04 (F2), and for the pressure, 0.091 (V), 0.086 (F1), 0.087 (F2). Since in F1 and
F2 the pressure is not calculated at the same positions as the streamfunction, the
extreme value closest to the vortex center is given. The streamfunction values
obtained for the reverse eddies in the lower corners. denoted LL and LR. are
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FiG. 10. u velocity along vertical center line, Re = 400. Notation as in Fig. 9.
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Fic. 11. v velocity along horizontal center line, Re = 400. Notation as in Fig. 9.
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F1G. 12. Vorticity along horizontal center line, Re = 400. Notation as in Fig. 9.

are 1.4 X 107°(LL) and 74 x 10° (LR) using V: 10 X 10~° and 29 X 10 ° using
F1;and 76 X 107° and 14 X 10~* using F2. The value for LR given by RH is about
5 X 107*. The graph of u velocity (Fig. 10) again shows intermediate results between
RH and RL, with V slightly superior. The graph of v velocity (Fig. 11) shows the
same story except that F1 and F2 are slightly superior. The vorticity results (Fig. 12)
show the effect of the reduced resolution. The results obtained here are clearly
inferior to those in [17]. This is because there is non-trivial structure in the vorticity
field in the centre of the cavity, and this cannot be captured by the grid. It is
noteworthy that the different algorithms used here all give very similar wrong results.
Near the wall x =1 the grid does have enough resolution, and the peak vorticity is
captured in V and F1 better than in RL. The resolution of RL and V normal to the
wall is similar in the boundary layer in terms of elements, but V uses fewer degrees of
freedom. This suggests that the arrangement of variables on the grid has produced the
improved resolution claimed in (8]

The pressure results (Fig. 13) from F1 and F2 are a little better than RL but well
short of the accurate solution given by RH. Those from V show an accurate peak
value, but wrong behaviour near x = 1. As in the case of Re = 100, this is caused by
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Fic. 14. Finite element mesh used for cylinder simulations.

calculating a streamfunction at inflow points on the grid and deriving fluxes from it.
These were held constant through the integration. At outflow the condition
ou - n/on =0 was enforced by equalising the normal velocity across the sides of the
outermost element. The symmetry condition was enforced as w = 0, and the cylinder
surface as dy/0n =0. The region of integration was chosen as in [15] to include all
the likely region of disturbed flow at the values of Reynolds number used. However.
as discussed recently by Fornberg [5], the boundary condition has to be imposed at a
distance much further out than the region of disturbed flow. The experiments in |5]
also indicate that the best boundary condition to use involves an analytic expansion
for the far field stream function. Since the boundary conditions used here are not
quite the same as used in either [5] or [15], there may be discrepancies in the results.

The models were integrated first to approximate steady state with Re = 1, and then
successively increasing Re to 5, 7, 10, 20 and 40. Results are shown here for Re =7,
10, 20 and 40 in the form of graphs of { and p along the cylinder surface. This allows
a quantitative comparison with [15]. In the case of the vorticity projection, values of
p are recovered as described in Section 2. Values are therefore obtained on the
cylinder wall directly. In the finite difference projection, values are obtained at
element centroids. No extrapolation procedure was used to generate values on the
wall, since attempting to do so did not give more accurate results. Integrations were
carried out using the vorticity projection on a 15 X 7 element grid. and the finite
difference projection on 15 X 7 and 22 X 10 grids. These are denoted by V, FL and
FH, respectively. These are compared with the results of |15} their 42-element grid

. ; as i ; N :
with the finite difference results of [18], denoted RF.

At Re =7, the vorticity results (Fig. 15) show that only FH of the integrations
done here produces a recirculating wake like the methods of {15]. This is indicated
by a change of sign of the vorticity on the cylinder surface near the trailing edge. The
magnitude of the region given by FH is much less than that given by RH and RF.
Though the calculations here differ from [15] in imposing symmetry, this should not
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FiG. 16. Pressure along cylinder surface, Re = 7. Notation as 1n Fig. 15,
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FiG. 17. Vorticity along cylinder surface. Re = 10. Notation as in Fig. 15.

308



FINITE ELEMENT NAVIER—STOKES SCHEMES

00—

9

& v RF i

—ogk RH
25 | ! L |
180° 135° 90° 45 4 0

FiG. 18. Pressure along cylinder surface, Re = 10. Notation as in Fig. 15.
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Fic. 19. Vorticity along cylinder surface, Re = 20. Notation as in Fig. 15.
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the method as a vorticity method or by using a finite difference approximation to the
pressure gradient term. In irregular geometry the vorticity-based method works better.
This suggests that such methods may have advantages. In the problem with regular
geometry, the results were insensitive to this choice of algorithm. However, all the
algorithms used the same approximation to the continuity equation, and it is possible
that this was the major source of error. Otherwise, the conclusion would be that grid
design is much more important than choice of algorithm.

In some problems, the finite element method is successful even on coarse grids
because the result it gives is an exact best fit in some sense (e.g.. in the energy norm).
In the problems solved here the answers on coarse grids do not seem to be exact best
fits in any useful sense, so that there is no possibility of recovering much extra infor-
mation by post-processing.
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