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It is shown how a consistent finite element approximation to the Navier-Stokes equations 
can be constructed on a general grid using an arrangement equivalent to the MAC stencil. It 
is known that the standard Galerkin construction does not give a consistent result unless at 
least quadratic velocities are used in this type of element. However, the use of either a finite 
difference approximation to the pressure gradient term or a Galerkin scheme equivalent to a 
vorticity method appears to give a consistent scheme. Both alternatives are tested, and the 
vorticity method is shown to be superior. 

1. INTRODUCTION 

Approximation of incompressible flows by the finite element method is currently a 
very active field of research. Since many of the applications of incompressible flow 
codes involve complex geometry, the finite element method is a natural candidate. 
Because the incompressibility constraint forces some of the calculation to be implicit, 
the finite element method is a much stronger competitor for finite difference schemes 
than it is in problems where fully explicit finite differences can be used. However, 
much work remains to be done in understanding, for instance, under what conditions 
finite element methods work well for transient flows and the relationships between 
primitive variable and vorticity formulations, and between finite element and other 
methods. A recent review paper by Hughes et al. [ 1) discusses some of these issues 
and lists many of the references to work in this area. 

In this paper we study some lower-order finite element approximations. It is 
desirable to use a low-order scheme because finite element schemes may be very 
expensive in computer time and storage, particularly in three dimensions. The most 
common such scheme is to use a bilinear or trilinear approximation to the velocity 
field and a piecewise constant approximation to pressure. This element was used in 
[ 1 ] and by Gresho ef al. [3] among many others. An alternative scheme was recently 
proposed by DiCarlo and Piva 181, based on the finite difference MAC stencil of 
Harlow and Welch [7]. They demonstrated an apparent advantage in accuracy over 
the scheme used in [3] for a rectangular grid. However, it is not easy to apply such a 
scheme to an arbitrary grid defined by an isoparametric coordinate transformation, 
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It is possible to construct a Galerkin algorithm in this case, in the way discussed by 
Raviart 191, but it does not give convergent results. In 181 the scheme was therefore 
only advocated for use with global coordinate transformations, for instance, those of 
Thames et al. 161, In this paper we examine two methods of obtaining a convergent 
result with this element, One method is to use a finite difference operator instead of 
the Galerkin approximation to the pressure gradient term. The other is to use a full 
Galerkin method designed to obtain an accurate vorticity. This involves using a 
projection technique to map a general velocity field to its solenoidal part in the 
manner of Chorin and Marsden [ 12, p. 51 1, and as used in finite elements by 
Grifftths ( IO] and Fortin [ 111. In this case it turns out that this procedure essentially 
reduces the method to a vorticity-based method. 

Both schemes are applied to two standard test problems where accurate solutions 
have been computed using very fine grids. Unfortunately, they are both steady flows, 
the recirculating flow in a square cavity and the flow past a cylinder at moderate 
Reynolds number. There are not as yet accurate reference solutions available for a 
non-trivial transient problem, though it is likely that enough vortex shedding 
computations will soon have been done to make that a suitable test. The cavity 
problem is solved on a coarse stretched grid in order to demonstrate that this 
arrangement of variables on the grid gives the expected high resolution. In the 
cylinder problem the purpose is to demonstrate the validity of the schemes on a 
distorted mesh. As with any method, the mesh has to be well designed in order to 
obtain reasonable results at a high Reynolds number. The resolutions here are chosen 
to match other published results in number of degrees of freedom. 

2. NUMERICAL ALGORITHMS 

2.1. Approximation of Variables 

Consider incompressible viscous flow governed by the dimensionless Navier- 
Stokes equations 

au z+“.v”+vp=-+“. (2.1 

v*u=o (2.2 

in a region a with boundary conditions 

u=f on aa. 

and initial conditions 

u = u. at t = 0, 

v . u. = 0. 
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R is the Reynolds number and the remaining notation is standard. The structure of 
incompressible flow in two dimensions is simpler than in three, and the algorithms 
are described for this case. The extension to three dimensions is discussed separately. 
Only two-dimensional computations will be presented. 

We now introduce a low-order finite element scheme for (2.1) with the variables 
defined in a way analogous to the finite difference MAC stencil. This scheme was 
described by Dicarlo and Piva 181. and proposed for use in general geometry by 
using a global coordinate transformation. In this paper. we develop ways of using it 
with the standard local isoparametric mapping. 

The domain R is subdivided into quadrilaterals. The global coordinates (.u.J,) are 
transformed in the usual way into local coordinates (5, q) by a piecewise bilinear 
transformation: 

Each element is transformed to a square (0, 1) X (0. 1) in the (<. Y/) coordinates. The 
local coordinates are non-orthogonal. The velocity field is approximated in terms of 
the mass flux across element sides. The nodal parameters are thus the integrated 
normal fluxes across the sides, and are assumed to be located at midside nodes. There 
are four degrees of freedom per element. The flux across the sides < = constant is 
assumed to be linear in c and independent of q, and vice versa. Provided the elements 
remain non-singular, this means that velocity components in two different directions 
are defined everywhere in each element, giving a representation of the velocity field in 
which the tangential velocity only is discontinuous across element boundaries. The 
prescribed variation in the mass fluxes establishes a logical connection between 
opposite sides of quadrilaterals. The structure of this connection on an arbitrary mesh 
is illustrated in Fig. 1. There is no need for the mesh to be logically rectangular. 

The definition of the velocity field in terms of mass fluxes means that the 
continuity equation (2.2) can be approximated by 

4 

x mi . iii= 0, 
r=l 

where the sum is taken over the four sides of each element in turn and the vector m 
represents the mass flux. 

FIG. 1. Logical structure of velocity representation. 
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The velocity field implied by this representation has covariant components in the 
(5; r,r) directions (ncz- “*, ny - ‘I* ), where (m, n) are the fluxes and a, y are components 
of the metric tensor of the bilinear coordinate transformation, defined in full by 

a=x; tyt,, P=x&j +YsY,, y=x;+y;, 

J= xI.v, -ytx,. (2.4) 

The contravariant components can be calculated in the usual way. The fluxes (m, n) 
can be written in the form 

where Izi are basis functions linear in r and independent of V, and pj vice versa. 
Up to this point, this construction could equally be carried out in three dimensions. 

In two dimensions, however, we can proceed further by identifying the fluxes (m, n) 
with the derivatives (-~I,u/& av/LQ of a discrete streamfunction v, where I,V is 
bilinear in c and q on each element and can be written in the form 

y W”X”(L rl). (2.6) 

where x,, are piecewise bilinear basis functions equal to unity at one corner node and 
zero at the remainder. The mass fluxes associated with x, are shown in Fig. 2. This 
set of fluxes forms a member of a divergence-free basis for the mass fluxes in the 
sense of [ 10, 111. The Cartesian components of the velocity field u are given by 

O-7) 

Note that these components are not linear in r and q. 

FIG. 2. Local basis for weakly solenoidal space J,. 
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This representation is different from that used by Dicarlo and Piva [S 1. This is 
because their specification of the contravariant components of velocity is sufficient to 
ensure continuity of mass flux if the coordinate transformation is C’, as are those 
that they use. Since this isoparametric transformation is not C’, the definition here 
has to be directly in terms of mass fluxes. 

The pressure in this element is naturally taken as piecewise constant at element 
centroids. It can thus be written in the form 

\‘P,&. (2.8 1 

where 0, is the characteristic function for one element. 

2.2. Construction of Velocity-Pressure Algorithm 

We now construct algorithms based on this element. As discussed in the 
Introduction, the standard Galerkin velocity-pressure algorithm is known not to 
converge with this element. We therefore seek alternatives, using as much of the 
Galerkin procedure as possible. These schemes are analysed in a companion paper 
121. 

Solve (2.1), (2.2) by the splitting procedure of Chorin [ 131, as used in finite 
elements by Gresho et al. [ 31 and others. Using a finite difference scheme in time, 
this means that we set 

u,*,~, = u,-~~ + 2At (-(” * Vu), + f (VW& 1, j , (2.9) 

U ttdt = @++A, - 2AtVp, (2.10) 

tv ’ u>t+At = O. (2.11) 

Equations (2.10) and (2.11) are solved as a simultaneous pair, thus giving 

2AtV’p = V . (u,*,,,). (2.12) 

Since the velocity representation is discontinuous, we rewrite (2.9) in the form used 
by Raviart 191: 

U:tAt=“t-At+2dt ((UX+vXhA,j~ (2.13) 

r=vxu, 

24 * 
t+At = ut+At -2AtV (p++*). (2.14) 

Equation (2.13) can be approximated by the Galerkin method as in 191, using basis 
functions x,, A,, ,u,, 19, as defined in the previous section. This proceeds in the 
following steps: 
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(i) Given initial m~dside fluxes (m, n) satisfying (2.3) calculate corner nodal 
values of the streamfunction w by direct integration. 

(ii) Calculate an approximate piecewise bilinear vorticity field using the 
Galerkin method with test functions x,,. 

(iii) Calculate the flux associated with u x 5. This requires components of u 
paraliel to {= constant and q = constant. The resulting fluxes are 

and 

(iv) Calculate the flux associated with (l/R) V x &I. This gives components 
-(l/R) & and (l/R) iI. 

(v) Write the Galerkin approximation to (2.13) as equations for the flux 
components (m, n): 

(2.16) 

(vi) Equation (2.14) cannot be separately approximated using the Galerkin 
method because the basis functions used for u and p do not have sufficient continuity 
except on a rectangular mesh. The Galerkin method could be used if (2.14) was 
replaced by the projection operator used in ] 121, as will be described in the next 
section. Alternatively, we proceed by using a finite difference approximation, setting 

m * 
f+At=mt+Af - a"26r(p + 4 lu12), 

n #+A? = @+A, - y"*&,(P -+ t bl*)* 
(2.17) 
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FIG. 3. Finite dtfference stencil for pressure gradlent 

where 6, and 6, are finite differences taken in the required directions, as shown in 
Fig. 3. The values of (p + { 1~1’) are assumed to be held at element centroids. and the 
necessary extra values are constructed by linear interpolation, with extrapolation if 
needed at boundaries. Equation (2.17) can be combined with (2.3) to form a discrete 
approximation to the Poisson equation (2.12), which is then solved by standard 
methods. 

This scheme handles the boundary conditions in a natural way. The normal fluxes 
across the boundary of B will usually be prescribed, and therefore equations in the 
system (2.16) are not written for boundary midside nodes. The no-slip condition is 
incorporated in the boundary integral term in (2.15) by prescribing iiv/&z which is 
the tangential velocity. 

An alternative to the approximation used for the advective term in (2.16) is to use 
a full two-stage method as in [5]. This involves first calculating the (x, y) 
components of u as piecewise bilinear functions, setting 

(2.18) 

and then calculating u . Vu by direct differentiation. The result. converted into the 
correct (& II) components, is then used in (2.16). 

2.3. Construction of Vorticity-Based Algorithm 

A complete Galerkin algorithm for (2.1) can be written using this element, if it is 
interpreted as a streamfunction-vorticity element. This proceeds as follows: 

6) calculate ye by direct integration; 

(ii) calculate [ using (2.15); 
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(iii) instead of (2.16), solve the pair of equations 

f H~xn, -Pxnr)(mt+At - ml-ml + (ax,, - Pxnrl)h+m - n,-~,)l dt dv 

= 2At 
f 

Cay -P’> 
a J2 

+ C&X,, - CLX,~-~~ d5 drl V interior n, (2.19) 
4 

x m,,,, . dsi = 0 around each element. (2.20) 
i=l 

Equation (2.19) is just the Galerkin approximation to the vorticity equation. with the 
advection term approximated by the Jacobian discussed by Jespersen 1141. In 
rectangular geometry, where /3 = 0, it can be obtained as a linear combination of the 
two equations of (2.16), since x, can be written as a sum of two basis functions A,,, 
and xs as a sum of p,. If /? # 0 this is not possible, which is why the Galerkin 
velocity-pressure algorithm does not work with this element in general geometry. 

If the boundary conditions are as stated in Section 2.1, u is given on LX?, then all 
the normal fluxes are prescribed on 80 and there are sufficient equations if (2.19) is 
applied only at interior nodes. There is one redundant equation in (2.20) which is a 
linear combination of the others. A similar situation applies for either symmetry 
conditions, or the far field analytic condition on the streamfunction as used by 
Fornberg [ 5 1. 

(iv) The pressure has to be recovered by solving an auxiliary Poisson equation 
in the manner of [ 151: 

v* (p++/“l*j=v~ (“XS-fvx<j. 

This can be solved using a Galerkin method with the piecewise bilinear functions x,! 
already used to represent the vorticity. There is no natural way of producing a 
piecewise constant pressure. The boundary conditions for (2.21) are discussed in 

1151. 

2.4. Three-dimensional Extension 

Extensive use was made of the streamfunction in describing the algorithms in the 
previous sections. This is convenient, but not essential. In three dimensions the nodal 
parameters would be mass fluxes (1. m, n) across the faces of hexahedra. 

Cartesian velocity components (u, L’, iv) can be derived from them by solving 
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where the local isoparametric coordinates are (& r~, a). Equation (2.15) can then be 
written as 

It is then straightforward to construct (2.16); and the rest of the hybrid finite 
difference algorithm. 

While the vorticity-based algorithm (2.19) can still be written down, the pair 
(2.19), (2.20) d 0 not contain sufficient equations if (2.19) is only written for interior 
nodes: even though it is now a vector equation. This difference is associated with the 
difficulty of choosing boundary conditions on the vector potential to allow a three- 
dimensional velocity field to be constructed from the vorticity field. This problem has 
not yet been satisfactorily resolved except in simple geometry. 

3. EXPERIMENTS 

3.1. Introductory Remarks 

In this section we demonstrate the validity of the two algorithms using the MAC- 
type finite element scheme by applying it to two standard test problems where the 
results are known from careful high-resolution computations. These are, unfor- 
tunately, steady flow simulations and can only provide a limited test of a transient 
code. However, inconsistency in the algorithm is still likely to show up in a steady 
case; it is hoped to test the algorithms on transient problems in the future. Since most 
of the difficulties with this sort of element only appear with a distorted grid, one of 
the tests involves non-trivial geometry. In order to estimate the resolving power the 
calculations are intentionally performed with rather limited resolution. since a 
duplication of the known solution with a very line grid would not give any infor- 
mation about the cost-effectiveness of the scheme. 

This standard test consists of calculating the steady two-dimensional flow in a 
square box (0, 1) x (0, I) driven by the lateral movement of the lid. This was used to 
test the finite element MAC scheme in 181. Results for a selection of Reynolds 
numbers have been reviewed by Olson and Tuann ] 16 ]. Very accurate reference 
results have been computed for Re = 1400 and 2000 by Winters and Cliffe [ 171. As 
an initial test, results were computed for Re = 1 to check against those of [ 8 ], and 
identical results were obtained. The flow at Re = 100 and 400 was then computed 
using a stretched 11 X 11 rectangular grid with values of x on each row and 4’ on 
each column of (0.00, 0.02. 0.08, 0.18. 0.32, 0.50, 0.68, 0.82. 0.92, 0.98, 1.00). 
Reynolds number considerations suggest that the boundary layers should be just 
resolved for Re = 100 but not for Re = 400. 

The computations were carried out using both the vorticity projection algorithm 
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(2.19) and the finite difference pressure gradient (2.17). The iatter was implemented 
with both the algorithm (2.16) for the nonlinear term and with a two-stage scheme 
(2.18). When (2.19) is used the pressure is recovered as a bilinear function by solving 
the Poisson equation derived from (2.21). The result is the dynamic pressure and 
interpolated values of u and L‘ are used to estimate the static pressure. The pressure is 
normalised by its value at the midpoint of the side opposite the sliding lid. 

The transient equations were integrated forward in time till apparent steady state. 
However, there is always the possibility of some residual error when comparing with 
solutions given by a steady-state code such as that in I17 1. Cross sections of the 
results are given in Figs. 4 to 13. since a quantitative comparison is easier than with 
a two-dimensional field. However. these have to be treated with some caution, since 
the grid resolution normal to the cross section is very low. In both figures and text 
the results using the vorticity projection are denoted as V and using the finite 
difference projection with single and two-stage advection as Fl and F2. 

At Re = 100 the results are shown in Figs. 4 to 8 and can be compared with those 
summarized in [ 16 1, Reference 1 16 1 gives values of the streamfunction at the vortex 
center ranging from 0.0784 to 0.1022, with the latter considered the best result. The 
best value for the vorticity at the vortex center is 3.155 and for the normaiised 

-0575 r 
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00 05 x IQ 

FIG. 4. Streamfunction along hortzontal center line. Re = 100. V, Vorticlty proJectIon: Fl: fmte cilf- 

ference. 

-05 I I , 4 I I I , I I 
00 05 Y 10 

FIG. 5. u velocity along vertical center Ime, Re= 100. Notatton as m Fig. 4 
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FIG. 6. ~1 velocity along horizontal center line, Re = 100. Notation as in Fig. 4. 

FIG. 7. Vorticity along horizontal center line, Re = 100. Notation as in Fig. 4. 

FIG. 8. Pressure along horizontal center line. Re = 100. Notation as in Fig. 4. 
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pressure 0.0922. The values obtained in the present calculations are, for the stream- 
function, 0.097 (V), 0.095 (Fl), 0.094 (F2), for the vorticity, 4.23 (V), 3.88 (Fl), 
4.04 (F2), and for the pressure, 0.091 (V), 0.086 (Fl), 0.087 (F2). Since in Fl and 
F2 the pressure is not calculated at the same positions as the streamfunction, the 
extreme value closest to the vortex center is given. The streamfunction values 
obtained for the reverse eddies in the lower corners, denoted LL and LR, are 
0.4 x 1O-6 (LL) and 11 x lo- ’ (LR) using V. The values given by 1161 range from 
I8 to 24 x 10s6 (LL) and 2 x 10Ph (LR). The values obtained from Fl and F2 are 
uncertain, because the errors in satisfying (2.3) exactly are as large as the stream- 
function associated with the corner eddies. The graphical results show close 
agreement, except for the pressures, There are large differences in the pressure near 
the right-hand boundary. Examination of the full two-dimensional results shows that 
these differences are due to the low resolution of the grid normal to the cross section 
shown. The dynamic pressure has significant variation on the grid scale in this 
region, and errors result. Therefore significant errors also appear in the static pressure 
field, despite its apparently smooth and easily predictable nature. 

At Re = 400 the graphical results can be closely compared with those in I17 I. The 
results obtained for the streamfunction and velocity fields are very close for all the 
algorithms considered here. There are some differences in the vorticity field and. 
again, large differences in the pressure. The streamfunction results (Fig. 9) are inter- 
mediate between those given in I17 1 using a 57 x 57 grid with corner reftnement 
(3317 nodes) denoted RH and a 29 x 29 grid with no refinement (893 nodes) 
denoted RL. The results from V are marginaily better. Values for the corner eddies 

-012r 

FIG. 9. Stream function along horizontal center line, Re = 400. V: Vorticity projection: F 1: finite 
difference; F2: finite difference using two-stage algorithm for advection; RH: Ref. 1171 with 57 X 57 
grid and corner refinement. 
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FIG. 10. u velocity along vertical center line, Re = 400. Notation as in FIN. 9. 
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FIG. Il. u velocity along horizontal center line, Re = 400. Notation as in Fig. 9. 
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FIG. 12. Vorticity along horizontal center line, Re = 400. Notation as in Fig. 9. 

are 1.4 x 10m6 (LL) and 74 x lo-’ (LR) using V; 10 x 10mh and 29 x 10 ’ using 
Fl: and 76 x lop6 and 14 x lo-” using F2. The value for LR given by RH is about 
5 X 10P4. The graph of u velocity (Fig. 10) again shows intermediate results between 
RH and RL, with V slightly superior. The graph of v velocity (Fig. 11) shows the 
same story except that Fl and F2 are slightly superior. The vorticity results (Fig. 12) 
show the effect of the reduced resolution. The results obtained here are clearly 
inferior to those in [ 171. This is because there is non-trivial structure in the vorticity 
field in the centre of the cavity, and this cannot be captured by the grid. It is 
noteworthy that the different algorithms used here all give very similar wrong results. 
Near the wall x = 1 the grid does have enough resolution, and the peak vorticity is 
captured in V and Fl better than in RL. The resolution of RL and V normal to the 
wall is similar in the boundary layer in terms of elements, but V uses fewer degrees of 
freedom. This suggests that the arrangement of variables on the grid has produced the 
improved resolution claimed in [ 8 1. 

The pressure results (Fig. 13) from F 1 and F2 are a little better than RL but well 
short of the accurate solution given by RH. Those from V show an accurate peak 
value, but wrong behaviour near x = 1. As in the case of Re = 100, this is caused by 
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0.0 1 , I I I 6 I I 

0.0 05 I I .o 

FIG. 13. Pressure along horizontal center line, Re = 400. Notation as in Fig. 9. 

the low resolution normal to the cross section and the non-trivial structure of the 
dynamic pressure field in the centre of the cavity. 

Overall, this experiment shows that this grid does have considerable resolving 
power for a given number of unknowns. This is expected because the staggered 
arrangement can halve the effective grid length for some of the terms in the equations. 
Most large-scale quantities can be adequately computed with high resolution only 
near the walls. The 11 x 11 grid failed only in the computation of the detailed 
vorticity and pressure distribution in the centre of the cavity. Even where the 
resolution was marginal, the effect of changes in the algorithm was very small. This 
suggests that grid design is more important than the choice of numerical algorithm. It 
would be interesting to repeat this calculation with the bilinear velocity element used 
in [3] and the same grid. 

3.3. Flow Past a Cylinder 

This problem consists of calculating the steady flow past a cylinder at Reynolds 
numbers up to 40, where the Reynolds number is given by 

Re= Udv-’ 

with U the free stream velocity, d the cylinder diameter and v the viscosity. Above 
this value the flow is no longer steady. The computations were carried out assuming 
symmetry; this may increase the maximum Re for which steady flow occurs. The grid 
used is shown in Fig. 14 for the lower-resolution version. The higher-resolution grid 
was constructed similarly. Because of the use of quadrilaterals, rather than triangles, 
it was not possible to imitate the design used in [ 151. The positions of the gridpoints 
were derived using an analytic function, but the standard local isoparametric coor- 
dinate transformation described in Section 2 was used. 

The boundary conditions on mass flux components at inflow were derived from 
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FE. 14. Finite element mesh used for cylinder simulations. 

calculating a streamfunction at inflow points on the grid and deriving fluxes from it. 
These were heid constant through the integration. At outflow the condition 
aU + n/&r = 0 was enforced by equalising the normal velocity across the sides of the 
outermost element. The symmetry condition was enforced as v/ = 0, and the cylinder 
surface as &U/C% = 0. The region of integration was chosen as in I15 ] to include all 
the likely region of disturbed flow at the values of Reynolds number used. However. 
as discussed recently by Fornberg [5 1, the boundary condition has to be imposed at a 
distance much further out than the region of disturbed flow. The experiments in [ 5 ] 
also indicate that the best boundary condition to use involves an analytic expansion 
for the far field stream function. Since the boundary conditions used here are not 
quite the same as used in either [5] or [ 151, there may be discrepancies in the results. 

The models were integrated first to approximate steady state with Re = 1, and then 
successively increasing Re to 5, 7, 10, 20 and 40. Results are shown here for Re = 7. 
10, 20 and 40 in the form of graphs of i and p along the cylinder surface, This allows 
a quantitative comparison with ] 151. In the case of the vorticity projection, values of 
p are recovered as described in Section 2. Values are therefore obtained on the 
cylinder wall directly. In the finite difference projection, values are obtained at 
element centroids. No extrapolation procedure was used to generate values on the 
wall, since attempting to do so did not give more accurate results. Integrations were 
carried out using the vorticity projection on a 15 x 7 element grid, and the finite 
difference projection on 15 X 7 and 22 X 10 grids. These are denoted by V, FL and 
FH, respectively. These are compared with the results of I15 1; their 42-element grid 
results are denoted RL, and the 78-element grid results RH. They are also compared 
with the finite difference results of [IS], denoted RF. 

At Re = 7, the vorticity results (Fig. 15) show that only FH of the integrations 
done here produces a recirculating wake like the methods of [ 15 1. This is indicated 
by a change of sign of the vorticity on the cylinder surface near the trailing edge. The 
magnitude of the region given by FH is much less than that given by RH and RF. 
Though the calculations here differ from [ 15 ] in imposing symmetry, this should not 
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-05 I I I I 
180. 13T 90’ 45’ e 0' 

FIG. 15. Vorticity along cylinder surface Re = 7. V: Vorticity projectlon (IS x 7 grid): FL: finite 
difference projection (15 x 7 grid); FH: finite difference projection (22 x 10 grid): RH: Ref. 115 1 7% 
element finite element grid; RF: Ref. [ 18 1. Abscissa in degrees from trailing edge of cylinder. 

affect that aspect of the flow. Otherwise the total variation in the results is no greater 
than that between RL, RH and RF. The position of maximum vorticity agrees in all 
the runs except RL. The values of maximum vorticity were difftcult to obtain 
precisely because of slow convergence to the steady state. The differences shown here 
are no larger than those due to the different boundary conditions tested in [ 31. 

The pressure (Fig. 16) shows fairly close agreement with RH and RF, and the 
differences between the results are mostly on a large scale and would lead to slightly 
different total drag. The differences between V and FL or FH are no more than to be 
expected given the difference in the method of calculating p. The position of the 
pressure minimum is very similar in V, RF and RH. but further forward in FL and 
FH. 

At Re = 10 (Fig. 17), all the runs show a recirculating wake. FL and FH agree 
more closely with RH and RF than does V. These are differences in the peak 
vorticity among all five results plotted. The shape of the distribution is similar for all 
results except RL. The pressure result (Fig. 18) shows close agreement between V and 
RH. The results of FL and FH again show a peak value further upstream, and a 
greater total variation. This may be due to the different position on the mesh in which 
p is calculated; the method used in V is exactly the same as that used in RH. At 
Re = 20 (Fig. 19), FL gives too large a recirculating region, while FH and V agree 
with RH. The peak vorticity position agrees with RH and RF. The pressure (Fig. 20) 
again shows a rather large disagreement between V and FL or FH. V is closer to RF 
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FIG. 16. Pressure along cylinder surface, Re = 7. Notatmn as m Fig. 15. 
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FIG. 17. Vortmty along cylinder surface. Re = IO. Notation as in Fig. 15. 
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FIG. 18. Pressure along cylinder surface, Re = 10. Notation as in Fig. 15. 
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FIG. 19. Vorticity along cylmder surface. Re = 20. Notation as in Fig. 15. 
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FIG. 20. Pressure along cylinder surface, Re = 20. Notation as m Fig. 15. 
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FIG. 21. Vorticlty along cylinder surface. Re = 40. Notation as m Fig. 15 
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FIG. 22. Pressure along cylmder surface, Re = 40. Notation as in Fig. 15. 

and RH. At Re = 40 (Fig. Zl), the vorticity distribution shows a very strong recir- 
culating wake in FL which disagrees with all the other results. FH and V agree more 
closely with ] 15 ]. The pressure (Fig. 22) shows larger differences than at Iower 
Reynolds number, and V and FH are now equally different from RH. 

When comparing these results with [ 151, note that the number of degrees of 
freedom in V and FL is similar to that in RL, and that in FH is similar to that in 
RH. The results here appear inferior to [ 15 ] in handling the wake, but better further 
upstream, since V and FL give a better vorticity and pressure distribution here than 
RL. The results of [.5 ] use much higher resolution and can be regarded as reference 
solutions at Re = 40. The size of the wake region is closer to that given by RF and 
RH, but the magnitudes of the peak positive and negative vorticities are closer to 
those given by V. The conclusion is thus that FL does not appear to give a good 
result, but that FH, RH, RF and V are all roughly correct; the differences between 
them are most likely to be due to differences in the far field boundary conditions, and 
also the use of a symmetry condition and a transient code in this study. Differences 
in the pressure field may also be caused by the different methods of recovering it. 

4. DISCUSSION 

This paper shows that it appears to be possible to construct a consistent approx- 
imation to the Navier-Stokes equations using a low-order element based on the MAC 
stencil on irregular quadrilaterals. However, it can only be done either by identifying 
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the method as a vorticity method or by using a finite difference approximation to the 
pressure gradient term. In irregular geometry the vorticity-based method works better. 
This suggests that such methods may have advantages. In the problem with regular 
geometry, the results were insensitive to this choice of algorithm. However. all the 
algorithms used the same approximation to the continuity equation, and it is possible 
that this was the major source of error. Otherwise, the conclusion would be that grid 
design is much more important than choice of algorithm. 

In some problems, the finite element method is successful even on coarse grids 
because the result it gives is an exact best fit in some sense (e.g., in the energy norm). 
In the problems solved here the answers on coarse grids do not seem to be exact best 
fits in any useful sense, so that there is no possibility of recovering much extra infor- 
mation by post-processing. 

ACKNOWLEDGMENTS 

This study was carrted out whtle the author was vtsitmg the Department of Mathematics, Universtty 
of California, Berkeley, under the sponsorship of the Centre for Pure and Applied Mathematics. The 
author benefited greatly from regular discussions with Professor Alexandre Chorin. and wtth Dr. P. M. 
Gresho and his group at the Lawrence Livermore Laboratory. 

REFERENCES 

1. T. J. R. HUGHES, W. K. Lru, AND A. BROOKS, J. Comput. Phys. 30 (1979). I-30. 
2. M. J. P. CULLEN, J. Comput. Phys. 51 (1983). 273-290. 
3. P. M. GRESHO. R. L. LEE, AND C. D. UPSON. Adr. Water Resources 4 (1981) 175-184. 
4. M. J. P. CULLEN AND K. W. MORTON. J. Comput. Phys. 34 (1980). 245-267. 
5. B. FORNBERG. J. Fluid Mech. 98 (1980). 819-855. 
6. F. C. THAMES. J. F. THOMPSON, C. W. MASTIN. AND R. L. WALKER. J. Comput. Phys. 24 (1977). 

245-273. 
7. F. H. HARLOW AND J. E. WELCH. Phys. Fluids 8 (1965). 2182-2189. 
8. A. DICARLO AND R. PIVA. Comput. & Fluids 8 (1980). 225-241. 
9. P. A. RAVIART. Springer Lecture Notes in Physics 91 (1977). 27-47. 

10. D. F. GRIFFITHS. Internat. J. Numer. Methods Fluids 1 (1981). 323-346. 
I I. M. FORTIN. Internat. J. Numer. Methods Fluids 1 (1981). 347-364. 
12. A. J. CHORIN AND J. E. MARSDEN. “A Mathematical Introduction to Flutd Mechamcs,” Sprmger- 

Verlag. New York, 1979. 
13. A. J. CHORIN. Math. Comp. 23 (1968), 341-354. 
14. D. C. JESPERSEN. J. Comput. PhTs. I6 (1974). 383-390. 
15. S. Y. TUANN AND M. D. OLSON. Comput. & Flwds 6 (1978). 219-240. 
16. M. D. OLSON AND S. Y. TUANN. J. Comput. Phys. 29 (1978). l-19. 
17. K. H. WINTERS AND K. A. CLIFFE. UKAEA Report R9444. Harwell, Oxfordshire, England. 1979. 
18. S. C. R. DENNIS AND G Z. CHANG. J. Fluid Mech. 42 (1970), 471489. 


